Innovations in Fuel Cell Technologies

Edited by

Robert Steinberger-Wilckens and Werner Lehnert Forschungszentrum Jülich, Jülich, Germany

Contents

Part 1: Micro-applications and Micro-systems

Chapter 1 Printed Enzymatic Current Sources	
Matti Valkiainen, Saara Tuurala, Maria Smolander	
and Otto- Ville Kaukoniemi	
1.1 Introduction	5
1.2 Enzyme Catalysts in Fuel Cells	
1.3 Enzyme-based Microsystems for Power Production	8
1.3.1 Biofuel Cells Constructed in a Liquid Chamber	6 8 8
1.3.2 Miniature Membraneless Biofuel Cells	11
1.3.3 Biofuel Cell Constructions Suitable for	
Large-scale Production	11
1.4 Printing Processes as Manufacturing Methods for	
Power Sources	15
1.4.1 Types of Thin and Printable Power Sources	17
1.5 Enzymes in Mass-production Applications	17
1.6 Printing and Coating of Enzymes	19
1.6.1 Screen Printing	19
1.6.2 Inkjet Printing	20
1.7 Printed Biofuel Cells	21
1.8 Conclusions	24
References	25
Chapter 2 Potential of Multilayer Ceramics for Micro Fuel Cells	28
Michael Stelter	_0
2.1 Challenges of Micro Fuel Cell System Development	28
2.1.1 Cost of Assembly	29

RSC Energy and Environment Series No. 2 Innovations in Fuel Cell Technologies

Edited by Robert Steinberger-Wilckens and Werner Lehnert

© Royal Society of Chemistry 2010

Published by the Royal Society of Chemistry, www.rsc.org

xii		Contents
-----	--	----------

2.1.2 Component Failures	29
2.2 Introduction to Multilayer Ceramics	29
2.3 Fuel Cell Relevant Subsystems and Geometries	30
2.3.1 Geometrical Shaping	30
2.3.2 Relevant Features of Fuel Cells	32
2.4 Examples	36
2.5 Conclusion	38
Part 2: High-Temperature Polymer Electrolyte Fuel Cells	
Chapter 3 Trends in High-Temperature Polymer Electrolyte Fuel Cells	45
Werner Lehnert, Christoph Wannek and Roswitha Zeis	
3.1 Introduction	45
3.2 The Oxygen Reduction Reaction	46
3.2.1 Tafel Slope and Reaction Pathway	46
3.2.2 The Adsorption of Phosphoric Acid Molecules	
and Phosphate Anions on Platinum	49
3.2.3 Enhanced ORR Activity: Platinum Alloy	
Catalysts and Alternative Electrolytes	53
3.3 Membrane Polymers	54
3.4 Catalyst and Diffusion Layer Development and	
Membrane Electrode Assembly Manufacture	58
3.5 Fuel Cell Performance and Durability	61
3.6 Stacks	66
3.7 Perspectives	69
References	70
Chapter 4 Large Auxiliary Power Units for Vessels and Airplanes	76
Ralf Peters and Andreas Westenberger	
4.1 Introduction	76
4.2 Motivation	77
4.3 Conditions for Auxiliary Power Unit Operation	82
4.3.1 Aeronautical Applications	82
4.3.2 Maritime Applications	86
4.4 Fuel Cell Technologies	87
4.4.1 Fuel Cell Types and their Applicability for	
Large Auxiliary Power Unit Systems	87
4.4.2 Fuels for Large Auxiliary Power Units	93
4.4.3 Fuel Processors	100
4.4.4 Fuel Cell Systems	101
4.5 System Evaluation	112
4.5.1 Focus on Aeronautical Systems	113
4.5.2 Focus on Maritime Systems	136
· · · · · · · · · · · · · · · · · · ·	

Contents

4.6 Conclusions	140
Acknowledgement	143
References	143
Part 3: Novel Fuels	
Chapter 5 Going Beyond Hydrogen: Non-hydrogen Fuels, Re-oxidation and Impurity Effects on Solid Oxide Fuel Cell Anodes Mark Cassidy, Jan Pieter Ouweltjes and Nico Dekker	153
5.1 Introduction	153
5.2 Carbonaceous Fuels	157
5.2.1 Fuel Resources and Processing Options	157
5.2.2 Conventional Solid Oxide Fuel Cell Anodes	159
5.2.3 Improved Anodes	168
5.3 Other Alternatives to Hydrogen	177
5.3.1 Ammonia	177
5.3.2 Hydrogen sulfide	178
References	179
Chapter 6 Direct Carbon Fuel Cells P. Desclaux, S. Nürnberger and U. Stimming	190
6.1 Electrochemical Oxidation of Carbon	190
6.1.1 Thermodynamics	191
6.1.2 Mechanism	192
6.1.3 Boudouard Reaction	193
6.2 Different Types of Direct Carbon Fuel Cells	193
6.2.1 Molten Carbonate Electrolyte	194
6.2.2 Motten Hydroxide Electrolyte	196
6.2.3 Solid Oxide Electrolyte	198
6.2.4 Other Concepts	200
6.3 Comparison of Different Carbon Fuels	207
6.4 Conclusions	209
References	210
Part 4: Modelling and Lifetime Prediction	
Chapter 7 Integrating Degradation into Fuel Cell Models and Lifetime Prediction Andreas Gubner	217
7.1 Introduction	217
7.2 Background	218
7.3 Basic Solid Oxide Fuel Cell Modelling Theory7.4 Calculations and Results	220 227

xiv	Contents

7.4.1 Determining the Area Specific Resistance	227
7.4.2 Experimental Validation	228
7.4.3 Simulation of the Current—Voltage Behaviour	231
7.5 Degradation Monitoring by Area Specific Resistance	
Simulation	234
7.6 Extensions of the Model	236
7.7 A Simple Lifetime Prediction Model	237
7.7.1 Some Literature Results	237
7.7.2 Development of a Non-linear Area Specific	220
Resistance Over Time Behaviour	238
7.8 Calculations	241 241
7.8.1 Constant Current Density	241
7.8.2 Varying Local Current Density and Fuel Utilisation Influence	242
	242
7.8.3 Change of Local Current Density and Area Specific Resistance Profile over Time	244
7.9 Conclusions	245
7.10 List of Symbols Used in this Chapter	245
Acknowledgements	247
References	247
references	
Chapter 8 Accelerated Lifetime Testing for Phosphoric Acid	
Fuel Cells	249
John Donahue, Ned CiPollini and Robert Fredley	
	2.40
8.1 Introduction	249
8.2 Background	249
8.3 Experimental Design	253
8.4 Testing	254
8.4.1 First Generation Testing: Pot Tests and	254
Corrosion Potential Measurement	254
8.4.2 Second Generation Testing: Potential Control	256
and Monitor Current	258
8.4.3 Third Generation Testing: Inter-cell Effects 8.5 Conclusions	260
	261
Acknowledgements References	261
References	201
Part 5: Hydrogen Generation and Reversible Fuel Cells	
Chapter 9 Electrolysis Using Fuel Cell Technology	267
A. Brisse, J. Schefold, C. Stoots and J. O'Brien	
0.1 Introduction	267
9.1 Introduction	269
9.2 Low-temperature Electrolysis 9.2.1 Introduction	269
9.2.1 Introduction 9.2.2 Commercial Systems	270
7.2.2 Commercial Systems	210

Contents	XV
Contents	

Contents	XV
9.2.3 Performance	270
9.2.4 Development Issues	271
9.3 High-temperature Steam Electrolysis	271
9.3.1 Introduction	271
9.3.2 Solid Oxide Electrolyser Cells	273
9.3.3 High-temperature Electrolyser Stacks	279
9.3.4 System Development	280
9.3.5 Summary	282
References	283
Chapter 10 Hydrogen Production by Internal Reforming Fuel Cells	287
Kas Hemmes	
10.1 Introduction	287
10.2 International Developments Reported in Literature	289
10.3 Co-production of Hydrogen and Power	290
10.3.1 Mode 1: High-efficiency Mode	293
10.3.2 Mode 2: Constant-current Mode	294
10.3.3 Mode 3: High-power Mode or Constant	
(Low) Voltage Mode	295
10.4 The 'Superwind Concept'	298
10.5 Hydrogen Production from Carbon Using a Direct	
Carbon Fuel Cell	300
10.6 Conclusions	303
References	304
Part 6: Outlook	
Chapter 11 Products, not Technology: Some Thoughts on Market	244
Introduction Processes	311
Robert Steinberger-Wilckens	
11.1 Introduction	311
11.2 Background	312
11.3 Technology Phasing-in versus Disruptive	212
Development	312
11.4 Battling Incumbent Technology	317
11.5 Paradigm Shifts and Succession of Generations	318
11.6 Transforming Technology into Products	320
11.7 Added Value, Special Markets and	202
Allowable Cost	323
11.8 Outlook	330
Acknowledgements	331
References	331
Subject Index	333